


USE OF FLOYD'S ALGORITHM TO FIND SHORTEST RESTRICTED PATHS

VICTOR KLEE and DAVID LARMAN

University of Washington, Seattle and University College, London

Abstract. In a directed network with no negative circuit, Floyd's algorithm
finds, for each pair of nodes x and y, a shortest path from x to y.
Here the procedure is extended to minimize more general length-functions over sets

of paths that are restricted in various ways.
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Throughout this paper, G denotes a complete directed graph with n nodes and
n? - n edges. Each edge is an orde?ed pair (i, j) of nodes and has as its length
a number A(i, j)eR* = J-», »]. For notational convenience G's node-set is
assumed to be the set N = {1, **-, n}.

A walk from x to y 1is a node-sequence (xo,"', xt) such that x, = X,
Xg = Ys and t > 0. It is a chain if no node is repeated and a circuit if x = X,
but there is otherwise no repetition. Both chains and circuits are called paths, a
practice that is unusual but is convenient for our purposes.

Floyd's algorithm [RILIWI[F](H2][L] initializes S[i, j1 <« A(i, J)
for all i, jeN and then proceeds as follows:

for k<« 1until n do

for i<«1 until n do
for j«1 until n do

5[1: j] * min{S['l, j]s 5[19 k] + 5[k, J]}-

If there are no circuits of negative length then S[x, y] emerges as the length of

a shortest path from x to y. The computation is easily modified to find shortest

paths in addition to their lengths.
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In the present paper the procedure is extended to deal with a family E of
sets of walks and with a walk-length function L more general than the usual one.
Under suitable assumptions the extended procedure finds, for each choice of
X, yeN and ZGE, a shortest Z-path from x to y. That is, L fis minimized
over the set of all paths from x to y that belong to Z. In the "classical"
case, Z is the set of all paths (or walks) in G, E = {Z}, and the length of a

walk is the sum of the length of its edges. |
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The function L is used to measure the length of a walk in terms of the lengths
*
of its edges. It is assumed the range of L 1is contained in R , the domain of
L 1is the set of all finite sequences in R*, and the following two conditions

are satisfied:

*
(1) if aqys°°°, a,eR  and 0O<s<t then
LY t and then

L(O.]a"'a at) = L(L(a]a”': O-S): L(“S,I_]a"'. 0-t))
(2) if Gy Gys Bys By € NG L with a < By and ay < B, then L(a],az) s L(B],Bz)-

The length of a walk W = (xo,‘--, xt) is defined as

L)\(W) = L(A(xos X]):"‘9 )\(Xt_]’ xt))-

By (1), L, (UV) = L,(L,(U), L,(V)) when U is awalk from x toy and V is a i
walk from y to z. Here UV denotes the walk that follows U from x to y and ‘
then follows V from y to z. !

Among the admissible functions L are

Lp(a],"‘, at) = (a?+---+a2)]/p for an integer p > 0,

Lo(apsss @) = max(ag,==+, o),

Lp(a],°'°, at) = (ch]|p+'“+|ott|p)]/p for a real p > 0.

The usual L is L]. The function L_ is also of practical interest, for if G

is initially equipped with nonnegative real edge-weights vy(i, j) representing

flow capacities and if A(i, j) = -y(i, j) for all i and j, then the shortest

paths with respect to L_ are those of maximum flow capacity for specified initial

and terminal nodes [H1][H2](L].
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the end of the initialization and also at the end of each passage through the
locp there exists a shortest Z-path P from x to y such that the following
three conditions are satisfied:

(a) s s odd; STACK[1] =y; if p > 0 then PATH[1] = x;

(b) PATH[1],---, PATH[p], STACK[s], STACK[s-2],---, STACK[1] 1is a subsequence
of P;

(c) for each odd k with 3<kss, the segment of P that joins i = STACK[k]
to j = STACK[k-2] 1is a shortest STACK[k-1]-path from i to j.

We turn now to EVFA. For WeF and Osks<n, Tlet wk denote the set of all
walks (xo,---, xt)ew such that xssk when 0<s<t. Thus the end nodes of walks
in W, are unrestricted but all intermediate nodes are in {1,---, k}. Let
F {W

sk oER
for Osksn:

: WeF}. Since W =W for all WeF, it suffices to prove the following

(10k) After the kth passage through the main loop of EVFA, conditions (8) and

(9) are satisfied for all x, yeN and ZeF,.

The proof is by induction on k. Here initialization is regarded as the Oth passage

through the main loop and assertion (100) is obvious because go is merely the
set of all edges (paths (xo, x])) in Z.

From the argument below it follows that (10k) holds for all k regardless of
the order in which i, j and (Q, v, W) appear in the main loop. In particular,

the main loop could be written as

for k « 1 until n do
jgr_‘___each (!’ Y; w)EI .qg

for each (i, jle{l,-+, nix{1,---, n} do . ..

That is convenient for programming in some languages with special array-handling

capabilities, such as APL.
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Now suppose, with 0O<ksn, that (10k_]) holds, and consider the kth passage
through the main loop. We note first that if i or j is k then there do not

exist U, VeF such that UV < W and

(d) Mw[i, j]l = -1 but Mg[i, k] # -1 # My[k, j] or

(e) L(Su[i, k], Sy[k, il) < Sw[i, il.
Suppose, for example, that j = k. If (d) holds there is no wk_1-path from i to
k but there is a U _,-path U from i to k and there is a V, _;-path V from
k to k. But then UV is a yk—wa]k from i to k and by condition (4) there

is an associated W -path P from i to k. Plainly P is,infact, a yk_]-path,

k
and that is a contradiction. A similar contradiction is derived from (e), using
conditions (1) - (4) and the inductive hypothesis. It follows that the K th rows
and kth columns of SW’ MW’ Uw and Vw are unchanged by the kth passage through
the main loop. Hence~(10;) halds for ;1] gegk and X, yeN with x =k or y =k
The case in which x#k#y remains.

Supposing, still, that O<ks<n and (]Ok-]) holds, consider Wez and i, jeN
with 1i#k#j. We discuss only the case in which (e) holds at some time during the

th

k™" passage, for the other cases (described in terms of (d) and (e)) are similar.

H = mm{L(SU[h k]’ Sv[ka ]]): (g, y; w){[:-},

the minimum during the Kth passage, and let (U', V') be the first pair (U, V)
for which the minimum is attained. Then at the end of the kth passage,
Sw[i’j] = U;Mw[i’ j] = k’ UU[i’ j] = gl’ vw[ i’ j] v yl

Let U be a shortest QL_]-path from i to k and let V be a shortest Y’k_]-

path from k to j, whence LA(UV) =u. Then UV e U'V' < W and hence UV is

Let
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a @k-walk from i to Jj. For (10k) it suffices to show UV is a shortest
wk-path from i to Jj. Consider an arbitrary shortest wk-walk W from i to

j and an arbitrary associated path P = (x_.,*--, xt). Then P e W, and

0
LA(P) < LA(W), whence of course

L,(P) =L (W) = L (uv).

The node k appears in P for otherwise it is true at the end of the (k-l)th

passage that Sw[i, il = LA(P) and then (e) never holds during the kth passage,
contrary to hypothesis. With el k there exist U and V such that
(xo,---, xs) e U, (xs,"', Xt) eV and (U, V, W) ¢ I. But then

Ly (00) s LSLE, KT, SyLk 31 8 LU, (xgoeees x)s Ly (xgares ) = LEP),

whence LA(UV) = LA(N) and UV is a shortest Uk-wa]k from 1 to j. If GV is

not a path it has an associated path that misses k, and that was shown to be

impossible.
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Though conditions (1)-(4) suffice for the validity of EVFA, some additional
conditions aid in verifying condition (4) for specific applications. The function

L s said to be nice if in addition to (1) and (2) it satisfies the following two

. conditions:

(11) each point of rng L is fixed under L; that is, L(a],"', at) =

L(L(a],"', at));

(12) if 820 then L(a, 8) 2 L(a) < L(B, @) for all « e rng L.

Note that each of Lp, Lco and LP s nice.

If W is a walk (xo."', xt) and the proper segment (xr,---, xs) of W

is a circuit C then C 1is called an intermediate circuit of W and wrs denotes

the walk that remains when all of C but X or  Xg is removed from W. More

: s ¢ ou
precisely, when 0 < r wrs' is the walk (Xg» s Xpr Xgyqo

or (xo,---, Xr) according as s+l<t, s+1 =t or s =t, and when s <t wrs

s oy X accord-

is the walk (X s "5 X 15 Xgamovs Xp)s (X 4o Xoamory X)) or (X

¢)
ing as r-1>0, r-1 =0 or r = 0.

Note that a walk is a path if and only if it has no intermediate circuit. Hence
condition (4) can be deduced from repeated application of the following condition:

(13) if W= (xo,---, xt) e WeF and (xr,~", xs) is an intermediate circuit

of W then wrs e W and LA(wrs) < LA(W).

Note that the inequality of (13) always holds when L =L_. In other cases it
can often be deduced from the following result. {

(14) If L is nice, C= (x.:-", xs) is an intermediate circuit of a walk

W = (xo,“', X and LA(C) > 0 then LA(wrs) < LA(N).

t)
To prove (14), note that W = cwrs W reg, W= wrsc if s=1t, and if

O<r<s<t there are walks U and V such that W = UCV and wrs = UV. We consider




from (1), (12) and (1) that
L, (U) = L(L, (W) = L(L,(V), L,(C)) = L, (uC),
then from (1) and (2) that
Lx(wrs) =LA(UV) = L(LA(U), LA(V)) < L(LA(UC), LA(V)) = LA(UCV) = LA(W).

Below are some illustrative problems on shortest restricted paths. In each
case, "find shortest paths" means that for each x, yeN, either a shortest path
from x to y (among those satisfying the indicated restrictions) must be found
or it must be concluded that no path from x to y satisfies the restrictions.

(A) A set of edges is given. For each k < £, find shortest paths that use

at most k of the special edges.

(B) A set of nodes is given. For each k < £, find shortest paths that use at

most k of the special nodes.

(C) A sequence of s sets is given, each consisting of nodes or edges or a

mixture. For each choice of (k],---, ks) with kr < Zr for all r, find

th

shortest paths that use (for all r) at most kr of the elements of the r*" set.

*
(D) In addition to the R -valued edge-lengths A(x, y), integer edge-lengths m(x,y)

2 0 are given. Each walk has its usual length L, and also a length I

where [ s L]. An integer £ > 0 is given. For each k < £, find Lx-shortest

paths P subject to the restriction that IA(P) £ K.

(E) The nodes of G are partitioned into two disjoint sets A and B, and an

integer £ > 0 1is given. For each k < £, find shortest paths that oscillate at

most k times between A and B.

only the third case for the others are similar to it. With LA(C) >0, it follows
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(F) A subgraph H of G and an integer £ > 0 are given. For each k < £,

find shortest paths P for which P n H has at most k components.

(G) A set M of edges of G is given. Find shortest M-alternating paths.

As can be seen by reference to conditions (1)-(4) and (13)-(14), the discussions

of (A)-(G) below are valid (that is, EVFA can be applied for the stated purpose)

if L is L  and also if L. is nice and LA(C) 2 0 for each circuit C inter-

mediate to a walk belonging to a member of F, where F 1is the family of sets of

walks used for the particular problem. (Problem (G) requires an additional condition,

stated later.)

(A) This problem, which was mentioned earlier, is straightforward. For O0s<ks<Z,
let W(k) denote the set of all walks (x0,°--, xt) such that the edge (xi_], xi)

5 “ﬁlk

is special for at most k values of i. lLet F = {W(k): Os<ks£}. Let

[ |

where

T

T, = CH(E), W3, W(K)): i+5 = k).

|}

Then Ilkl = k+1 and ]II (2+1)(£+2)/2. The overall time-complexity of EFWA for
this problem is 0(£2n3).

(B) This problem is similar to (A), but it is included to illustrate the way

in which the end behavior of walks must sometimes be considered in constructing

F and T for the application of EFWA. For Osk<g Tlet @__(k) <resp. W_.(k),

4 U+_(k), U++(k)> denote the set of all walks (xo,---, Xt) such that the node x,

isspecial for at most k values of i with O0<i<t and, in addition, neither Xo

is special (resp. X¢ is special but X5 is not, X, is special but Xy

; is not, both X5 and X, are special). Let F consist of the sets W__(k) for

i k<t, thesets W_(k) and W,_(k) for ksf-1, and the sets W_(k) for |

Xt




4.4

ork® Where T, consists of the triples

? : (W__(i), W__(3)» W__(k)) for i+j = k,

(W__(1), W_ (3), W_,(k-1)), (W,_(1), W__(3), W _(k-1))
and (W_ (i), W, _(3), W__(k)) for i+j = k-1,
(W_ (1), W, (3), W_ (k-1)), (W () W, _(3), W, _(k-1))
and (W,_(), W_,(3), W (k-2)) for i+j = k-2,
and (W Ci)s W (3] W  (k-2}) for i+j = k-3.

Again, |T| 1is 0(£%) and the complexity of EVFA is 0(¢%nd).

(C) This is included to illustrate the application of EVFA when the desired

: ke .2 ;
paths are subject to several restrictions. In order to avo1dAnotat1ona1 morass,

only the case of sets of edges is discussed. For k] < Z],---, ks < 25, let

W(k],---, ks) denote the set of all walks (xo,---, xt) such that, for lsrss,

|
(xi_], xi) belongs to the rth set of edges for at most k. values of i. Let 1
T consist of all triples ;

i

(w(i],“’, iS)’ U(j]s"'a jS)’ W(k]:'“: kS))

such that for 1l<rss, e 1 dy = kr < Zr. Then

z] 22 ZS = 2
= ¥ A% = +
|7l kao Zk2=o zks=0((k]+1)(k2+1) (kgH1) = 27T (£,41) (£,42)
and the complexity of EVFA is
-S 2.3
0(2 (LILZ £s) n”).

(D) This may be regarded as the integer-weighted version of a problem of which

(A) is the cardinality-weighted version. Similar extensions are available for the
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other problems considered here. For Osks<f, #et W(k) be the set of all walks
W for which In(w) < k. Define E and I in the obvious ways. The complexity
of EVFA is O(SLZn3 . For a closely related treatment of this problem and of

(A), see the discussion of the Bellman-Ford method in (L, pp. 74-75, 92-931.

EVFA is similar to the Bellman-Ford method but is more general. Roughly speaking,
it amounts to replacing the additive semigroup {0,1,2,...} of Bellman-Ford

by an arbitrary semigroup.

(E) This is a special case of a more general problem, which may be formulated
as follows: A function ¢ 1is defined on a set of nodes and edges of G, with
rng ¢ < {1,°**, m}, and an integer £ > 0 is given. For each k < £, find

shortest paths along which ¢ has at most k relative extrema.

As the term is used here, a relative extremum of a real sequence (ao""’ au)

is an ordered pair (r, s} such that O<rss<u and

a e I R o or a S EE S e T

r-1 r 3 s+l

For a walk W = (xo,---, xt), let

exp W = (XO’ (x09 X])a x]s"'a(xt_] sxt)s xt):

the expanded version of W in which nodes and edges alternate. Let w¢ denote
the sequence of ¢-values corresponding to the elements of exp W that belong to
dmn ¢, and let p¢(w) denote the number of relative extrema of w¢. The general
problem is to find shortest paths P for which p¢(P) < k. Problem (E) is the

special case in which

(¥*) m=2 anddmn ¢ =N=AuB, with ¢=1 on A and ¢ =2 on B.

D e g e et B L e g L




As is shown below, this can be handled by EVFA. However, we do not know how to use

EVFA efficiently for the general problem, or even for the following special cases:

m=3 and dmn ¢ = N;
m=2 and dwn ¢ is a proper subset of N;
m=2 and dmn ¢ is the set E of all edges of G.

In each case there is difficulty, even when L is L, and all values of the edge-
length A are positive, in constructing a suitable family F satisfying conditions
(3) and (4).

Now let us return to (E) in the formulation provided by (*), except that the
condition dmn ¢ = N may be replaced by dmn ¢ > N. For O<k<f and u, ve{l,2},
let wuv(k) denote the set of all walks W = (xo,---, xt) such that ¢(xo) =
u, ¢(kt) = v, and w¢ has at most k relative extrema (equivalently, W oscillates

at most k times between A and B). Let

5 = {wu’v(k): U, velly 21, k s &)

and let T consist of all triples.

(W, ()0 ()1, (k) for ue(1,2} and ({i,J} = {0,k} or (i>0<j and i+j = k-1))

(W, ()W (3) W, (k) for {u,v} = (1,2} and i+j = k-1,

(W (1) W, (3),W,, (k) for {u,v} = (1,2} and (1,3) = (k,0) or (§>0 and i+j = k-1)),

1,2y and ((i,j) = (0,k) or (i>0 and i+j = k=1)).

(W (i)W (3),W (k) for {u,v}

“uu “uv ~uv
Then EVFA can be applied, solving problem (E) in time 0(£2n3).

(F) Define ¢ on all nodes and edges of G, with ¢ = 1 on nodes and edges of

the graph H and ¢ = 2 otherwise. With the qu as in the preceding paragraph,

the paths P for which P n H has at most k components are precisely the paths in
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Wyq(2k=3) U Wy ,(2k=2) U Wy (2K=2) u Wyp(2k-3).

Hence (F) can also be handled by EVFA in time 0(£2n3).

(G) This problem is also discussed in a more general setting. With ¢ as in the
discussion of (E) and with m = 2, let a walk W be called ¢-alternating if the
sequence w¢ alternates between 1 and 2. How can shortest ¢-alternating paths be
found? Problem (G) is the special case in which dm ¢ = E, ¢ =1 on M, and
¢ =2 on E ~ M.

When dmn ¢ > N, EVFA can be applied by taking F = {W,,.W,,.W, W 5}, where
W, s the set of all ¢-alternating walks W such that the sequence w¢ starts
with u and ends with v. Then let T consist of all triples (W W W )
and (wuv’wvv’wuv) for all wu, ve{1,2}.

Now consider the case in which dmn ¢ = E. Then each pair (i, j) forms a
¢-alternating path (recall the standing hypothesis that G is the complete graph
on N) but of course we are interested only in paths of finite length. Define E

s of the preceding paragraph to include only walks of

by restricting the wuv
finite length, and assume

(+) each alternating circuit of finite length has an even number of edges.

Then problem (F) can be handled by EVFA with T consisting of all triples
W , W
Hup> 4

may fail when (+) fails for then a path associated with an alternating walk need

v’ wuv) for u, v e {0,1} and {p,q} = {0,1}. However, this approach

ay
not be:a]ternating path and thus condition (4) may fail. For example, consider
Fig. 1 and note that (xz,X3,X4,x5) is an alternating circuit according to our

definition, where the solid edges are those in M. f




Fig. 1: The walk (xo,---, x7) is alternating but the associated path

: (xo,x],x7) is not.

Brown [B] suggests a method for finding shortest M-alternating paths in a directed
graph D = (N, E) (no longer assumed complete). Another directed graph D" s
i constructed, having two nodes x' and x" for each node x of D, and the edges

*
of D are obtained as follows for each edge (x, y) of D with length x(x,y)<e.

when (x,y) € M, (x',y") 1is an edge of D" with length (X, y);
when (x,y) ¢ M, (x", y') 1is an edge of D" with length A(x, y).

Itis claimed [B] there is a natural one-to-one correspondence between alternating paths
*

in D and ordinary paths in D . Thus the problem of finding shortest alternating

paths in D 1is equivalent to the problem of finding shortest ordinary paths in

D*. The claim is correct when (+) holds but not in general, as can be seen from

in D corresponds to the walk (xo,x],x2,x3,x4,x2,x],x7) in D.

In general, Brown's construction does produce a one-to-one correspondence between
the walks in D* and the alternating walks in D. If D has no negative alternating
circuit then D* has no negative circuit and the Floyd-Warshall algorithm can be
applied to find shortest paths (=shortest walks) in D* and hence alternating walks

in D. The latter may or may not be paths. For general graphs, even when L = L]

and may or may not be paths. For general graphs, even when L = L] and x > 0, we

Fig. 1. For example, if D is the graph of Fig. 1 then the path (xg,xi,xz,x3,x4,x2,x],x4

o T
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do not know how to apply EFVA directly to find shortest alternating paths.
However, the more complicated "blossom" methods of Edmonds [E1J[E2][L] will
apparently apply to this problem.

We close with a query. For Os<fsm<n and for p e {5, =, 2} let

Po(ﬁ,m,n,p) <resp. gl(z,m,n,p)> denote the following problem:

A complete graph G 1is given, with n nodes and positive edge-lengths.
In addition, a set of m special nodes <resp. edges> of G 1is given. Find
shortest paths P in G such that the number of special nodes <resp. edges)

used by P is in the relation p to 2.

We have seen here that the extended version of Floyd's algorithm solves

II'U

(2 m,n,<) and gl(l,m,n,s) in time 0(22n3). By contrast, the problem
oM

II'U

»N,n,=) is essentially the traveling salesman problem and hence is NP-
complete [K1JfK2JTAHU]. What else of interest can be said about the computa-

tional complexity of

Po(z,m,n,p) and P(&,m,n,p) for p e {=, 2}?




References

[AHU] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of

(8]
[E1]
(e2]

(Fl
[HI]
[H2]

[KI]

Computer Algorithms. 1974. Addison-Wesley, Reading, Mass.
J. R. Brown, Shortest alternating path algorithms, Networks 4(1976) 311-334.
J. Edmonds, Paths, trees and flowers, Can. J. Math. 17(1965) 449-467.

J. Edmonds, Maximum matching and a polyhedron with 0, 1 vertices,
J. Res. Nat. Bur. Standards 69B(1965) 125-130.

R. W. Floyd, Algorithm 97, Shortest path. Comm. Assoc. Comp. Mach. 5(1962)345.

T. C. Hu, The maximum capacity route problem. Operations Res. 9(1961)898-900.

T. C. Hu, Integer Programming and Network Flows. 1969. Addison-Wesley,
Reading, Mass. |

R. M. Karp, Reducibility among combinatorial problems. Complexity of Computer
Computations (Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., 1972), pp. 85-103. 1972. Plenum, New York.

R. M. Karp, On the computational complexity of combinatorial problems.
Networks 5(1975)45-68.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids. 1976. Holt,
Rinehart and Winston, New York.

B. Roy, Transitivité et connexité, C. R. Acad. Sci. Paris 249(1959) 216-218.

S. Marshall, A theorem on Boolean matrices, J. Assoc. Comp. Mach. 9(1962) 11-12.




Secunty Clussification

DOCUMENT CONTROL DATA-R& D

(Sccurity classification of title, body of abstract and indexing annotition must be entered when the overall report is classilied)
I. ORIGINATING ACTIVITY (Corporate author) 20, REPORT SECURITY CLASSIFICATION
Unclassified
University of Washington 25, GrRouP

3. REPORT TITLE

Use of Floyd's algorithm to find shortest restri%@d paths

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical

5. AUTHORIS) (First name, middle initial, last name)

Victor Klee and David Larman

6. REPORT DATE 78, TOTAL NO. OF PAGES 7b. NO. OF RLFS
September, 1977 21 12
8a. CONTRACT OR GRANT NO, 94, ORIGINATOR'S REPORT NUMBERI(S)

N00014-67-A-0103-0003 v

b. PROJECT NO.

Technical Report No. 62 ¥

NRO44 353

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT

Releasable without Timitations on dissemination

Approved for public release;
Distributicn Unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

\

\

13. ABSTRACT
\
In a directed network with no negative circuit, Floyd's algorithm finds, for
each pair of nodes x and y, a shortest path from x to y. Here the
procedure is extended to minimize more general length functions over sets of
paths that are restricted in various ways.ﬁ

\

\

\

\

DD o™ 1473 (PacE 1)

S/N 0101.807.6801 Sccurnity Classilication

e & T ot AN
et 2 X




Sl it oot s 0o

i

‘UI\\.IGQ) iried

Security Classification

wyd KEY WORDS LN A LINK B LiINK
ROLE wT ROLE wT ROLE wT H
arc length f
e
directed network 'h
Floyd's algorithm B
network ‘
negative circuit ‘
restricted path Ty
shortest chain e
shortest path !.
walk
——— .
[
&
P
!
\
. 'w'
DD %5V.1473 (sack)
(PAGE 2) Security Classification dates
o ,:’, ¢ N




